Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity

نویسندگان

  • Jitao Li
  • Mingming Jiang
  • Chunxiang Xu
  • Yueyue Wang
  • Yi Lin
  • Junfeng Lu
  • Zengliang Shi
چکیده

The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was constructed to investigate the fundamental physics of graphene SP and the functional extension of ZnO UV lasing. Through the coupling between graphene SP modes and conventional optical microcavity modes of ZnO, improved F-P lasing performance was realized, including the lowered lasing threshold, the improved lasing quality and the remarkably enhanced lasing intensity. The underlying mechanism of the improved lasing performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator

Recent years have witnessed a growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface plasmons-electromagnetic modes evanescently confined to metal-dielectric interfaces-offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain me...

متن کامل

Vertical-cavity and randomly scattered lasing from different thicknesses of epitaxial ZnO films grown on Y₂O₃-buffered Si (111).

Two different types of lasing modes, vertical Fabry-Perot cavity and random lasing, were observed in ZnO epi-films of different thicknesses grown on Si (111) substrates. Under optical excitation at room temperature by a frequency tripled Nd:YVO₄ laser with wavelength of 355 nm, the lasing thresholds are low due to high crystalline quality of the ZnO epitaxial films, which act as microresonators...

متن کامل

Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth.

We propose and numerically analyze a plasmonic Bragg reflector formed in a graphene waveguide. The results show that the graphene plasmonic Bragg reflector can produce a broadband stopband that can be tuned over a wide wavelength range by a small change in the Fermi energy level of graphene. By introducing a defect into the Bragg reflector, we can achieve a Fabry-Perot-like microcavity with a q...

متن کامل

Super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on an Au substrate for plasmon lasers

We demonstrate an individual ZnO hexagonal microrod on the surface of an Au substrate which can become new sources for manufacturing miniature ZnO plasmon lasers by surface plasmon polariton coupling to whispering-gallery modes (WGMs). We also demonstrate that the rough surface of Au substrates can acquire a more satisfied enhancement of ZnO emission if the surface geometry of Au substrates is ...

متن کامل

Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity.

We report on the room temperature polariton lasing and photon lasing in a ZnO-based hybrid microcavity under optical pumping. A series of experimental studies of the polariton lasing (exciton-photon detunings of δ = -119 meV) in the strong-coupling regime are discussed and compared to a photon lasing (δ = -45 meV) in the weak-coupling regime obtained in the same structure. The measured threshol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015